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serially along the line, with merely an indication of 
the changing indices. 

In any case a large typescript table should be pre- 
pared (e.g., as computer output) and considerably re- 
duced to a photograph no larger than a full page in 
the journal. Such photographs (one or more) should 
be suitable for direct photographic reproduction. The 
editor of Acta Crystallographica reports that such a 
procedure greatly facilitates publication. 

Our thanks are due to Professor Dame Kathleen 
Lonsdale, F.R.S., to Professor Caroline MacGillavry, 
to Professor P.P.Ewald, F.R.S., to Professor Frank- 
Kamenetskij, and to Professor V. B. Tatarskij for valu- 
able suggestions. 
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Laue Ellipses and Reciprocal-Lattice Plane Packing Densities 
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For each complete ellipse on a Laue photograph one can read off an inclination correction factor 
(ICF) from a chart and multiply it by the number (N) of reflexions counted on the ellipse. The product 
D = N. ICF is inversely proportional to the unit-cell area of the generating reciprocal-lattice plane and 
is often sufficient to identify the plane. Use is made of the facts that the reciprocal-lattice lines gen- 
erating Laue reflexions are uniquely specified by their prime coordinate points in the reciprocal lattice 
(points with at least two coordinates prime to each other), and that these prime coordinate points are 
uniformly distributed over any n-dimensional lattice (n___2). 

Aim 

Laue photographs seem to be used mainly to deter- 
mine angles within the reciprocal lattice, or to find the 
orientation of a crystal. Another possible use is the 
identification of the generating reciprocal-lattice plane 
from its Laue ellipse, by means of counting the number 
of reflexions on the complete ellipse. It is shown below 
how this number, N, together with an inclination cor- 
rection factor, ICF, obtained from a transparency 
superposed on the ellipse, can give a quick estimate 

* Present address: Department of Physics, University of 
the Witwatersrand, Johannesburg, South Africa. 

of the relative inverse unit-cell area of the generating 
reciprocal-lattice plane; this is often sufficient to 
identify the reciprocal-lattice plane. It is also easy to 
calculate roughly the angular corrections required to 
swing that plane into, say, a horizontal orientation. 

Terminology 

Because complete Laue ellipses are required, a cylin- 
drical camera with its wider angular range is better 
suited than a planar one; the term 'ellipse' will be 
retained, howe ver. Reciprocal-lattice point, reciprocal- 
lattice line a~ d reciprocal-lattice plane will be ab- 
breviated to re point, relline and relplane, respectively. 
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Reciprocal-lattice geometry 
and the number of reflexions on a Laue ellipse 

The white radiation used for Laue photographs has a 
continuous spectrum which ranges from a well- 
defined minimum wavelength to a much less sharply 
defined tail in the long wavelength region. The cor- 
responding Ewald spheres have radii from a maximum 
radius R down to a small, ill-defined minimum which 
we can assume to be zero. They are all nested inside 
each other and tangent in the relpoint O, as indicated 
in Fig. 1. 

Any relpoint P '  inside sphere C (the maximum 
Ewald sphere of radius R about C) has exactly one 
sphere C'  of this set of spheres going through it and 
gives rise to a reflexion in the direction of C'P'.  Let 
the projection of OP' meet sphere C in P. Then CP 
is parallel to C'P'  as well as to C"P" ,  etc., where 
P', P "  etc. are successive relpoints on the same relline 
through O, and C', C" etc. are the centres of the cor- 
responding Ewald spheres through them. All the paral- 
lel reflexions superpose to form one spot on the film, 
and thus each relline O P ' P " . . .  gives rise to exactly 
one Laue reflexion, in the direction of CP, as long as 
at least the first point P '  seen from O lies within 
sphere C. 

Any relplane through O and intersecting sphere C 
will thus give rise to as many reflexions CP as there are 
'first' points P '  on the circular region of the plane 
inside sphere C. Fig. 2(a) shows such a circular region 
in a general relplane through O; the point C may lie 
either above or below the relplane. In any such relplane 
we can select two suitable rellines OH and OK as 
axes [Fig. 2(b)] and give the corresponding coordinates 
of any relpoint in the plane as a pair of integers (h, k). 
It is then obvious that for all 'first' points P '  in this 
plane, and for no others, the coordinates h and k are 
prime to each other. We accordingly call the points 
P '  'prime coordinate points' (p.c.p.). The number of 
reflexions counted on a complete Laue ellipse is then 
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Fig.2. Circular region of a relplane through O cut out by 
maximum Ewald sphere C. (a) Showing all the points P" 
enclosed (open circles) and some of the points P on the 
periphery (full circles). (b) Showing a pair of lattice lines, 
OH and OK, chosen as axes; OK" could have been used 
instead of OK, leaving the points P" unaltered but changing 
their coordinates. 
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Fig. 1. The Ewald sphere construction for finding the direction of a Laue reflexion. 
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simply equal to the number of p.c.p, on that circular 
region of the generating relplane which is contained 
within the maximum Ewald sphere C. 

The prime coordinate point theorem 

We define a prime coordinate point in an n-dimensional 
space to be any point with integral coordinates, at 
least two of which are prime to each other. This 
ensures that we are always dealing with 'first' lattice 
points as seen from the origin. 

The theorem then states that, given an n-dimensional 
space with general axes, the average prime coordinate 
point density is constant throughout that space and 
inversely proportional to the unit cell volume of the 
n-dimensional lattice formed by all the points with 
integral coordinates. 

For the proof we begin with the two-dimensional 
case. First consider a unit square lattice as shown in 
Fig. 3(a). Along each line k =const. the p.c.p, form a 
repetition of some finite symmetrical pattern. The pat- 
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Fig.3. Unit square lattice with only the p.c.p, shown; (a) 
before, (b) after a shear to the right, leaving the unit cell 
area constant. 

contained in k. For example, the lines k = 4 and k = 8 
have the same pattern because in both cases k contains 
only the factor 2. If each factor J~ occurs only once 
in the decomposition of k, the pattern length is of 
course equal to k. The number of p.c.p, per pattern 

n k  

length is H (J~- 1), except for k = + 1. 
t = 1  

The average density of p.c.p, along any line k =  
const, is thus constant. We could now construct a 
reasonably large sampling frame of arbitrary shape, 
put it down anywhere on the plane and shift it through 
arbitrary distances parallel to O H ,  without changing 
the average number of p.c.p, enclosed. But the same 
applies equally well to the lines h=const ,  and shifts 
parallel to OK. Since any general displacement of the 
frame across the lattice can be resolved into two com- 
ponents along O H  and OK, respectively, it follows 
that the average p.c.p, density over the whole lattice 
must be constant. 

It will remain constant even if the axes are inclined 
at an arbitrary angle to each other (other than 0 or n), 
so long as the area of the unit cell does not change. 
Fig. 3(b) shows an example: The lattice of Fig. 3(a) has 
been sheared to the right so that each point on the 
lattice line k = 1 has been moved to the right through a 
distance d, each point on k = 2  through a distance 
2d, etc. The average p.c.p, density along each line 
k=const ,  remains the same as before the shear, and 
as long as the distance between them (and hence the 
unit-cell area) remains unchanged, too, the average 
p.c.p, density over the whole plane lattice will remain 
the same as before. 

The proof for the three-dimensional case is an exten- 
sion of the foregoing two-dimensional argument, and 
higher-dimensional cases follow similarly. It should 
be noted that for unit lattices the average p.c.p, density 
increases monotonically with the number of dimen- 
sions, and it might be interesting to find out whether 
it tends to 1 or not as n ~ co. 

To find the numerical value of the average p.c.p. 
density in a two-dimensional unit square lattice, two 
slightly different computer programs were written. 
Both use the same sampling method (varying the 
radius of a circle about the origin), but whereas the 
one actually determines the number of p.c.p, included 
by the sampling circle for successive lattice lines, the 
other one first finds the average line density and then 
multiplies by the length of line included in the sampling 
circle. Both methods give the same answer for the p.c.p. 
density, viz. 0.6079, and it seems that the method of 
sampling is more critical than the method of counting. 

Application to Laue ellipses 

We now know that the number of reflexions N counted 
on a complete Laue ellipse is proportional to the 
relpoint density on the generating relplane, i.e. inversely 
proportional to the unit-cell area on that relplane. 
Besides, N is still a function of the radius r of the 



452 L A U E  ELLIPSES AND R E C I P R O C A L - L A T T I C E  P L A N E  P A C K I N G  D E N S I T I E S  

circular region of the relplane contained within sphere 
C. Thus we could find the p.c.p, density of that relplane 
by dividing N by rcr z. It is more convenient, however, 
to calculate only a relative p.c.p, density D for the 
ellipse concerned, by multiplying N by an inclination 
correction factor 

~R 2 7rR 2 
I C F -  - -  - = cosec 2 ~ ,  

~r 2 7r(R sin ct) 2 

where e is the semi-vertical angle of the generating cone 
of Laue reflexions. To get e, we use the 'extreme point' 
of the ellipse, corresponding to the maximum possible 
diffraction angle 2e for the ellipse. On a plane film, the 
loci of constant c~ and thus of constant ICF would be 
concentric circles; on a cylindrical film rolled flat, they 
are as shown in Fig. 4. 

To obtain the various contours of constant cosec 2 ~, 
it was noted that for a given c~, the circles 

x 2 +y2 = (R tan 2ct)2 

on a plane film transform into 

(R tan Y)2+(Z sec ]/ ')2=(R tan 200 2 

on a cylindrical film, where (x,y) are the rectangular 
coordinates on the plane film and (s,z) those on the 
tangent cylindrical film, of the points where an extreme 
reflexion would intersect the films, and where lr= s/R. 
This can be verified from Fig. 5: 

x/R = tan 11" and y/(R sec F) = z/R 
give 

x = R  tan F and y = z  sec Y. 

Using the above relations, suitable values of cosec 2 c~ 
were chosen and the corresponding contours cal- 
culated. 

Table 1 indicates the accuracy involved. Two photo- 
graphs (A and B) were taken of a crystal in two known 
positions, and another two (A' and B') after rotation 
of the crystal through 180 ° from those positions. A and 
A', as well as B and B', are then mirror images of 
each other in the horizontal centre line on the film. 
For each complete ellipse, a tracing was made, the 
transparent ICF chart of Fig.4 superposed on it, and 
the ICF at the farthest point from the film centre 
reached by the ellipse was read off by interpolation 
between the contours. The relative density D--N.  ICF 
then indicates the packing density of relpoints on the 
generating relplane. Ellipses I and VI stand out clearly 
from the next important ones, in spite of the scatter 
found for values of D. And indeed these two ellipses 
correspond to two major relplanes in the crystal con- 
cerned, both of practically equal unit cell area. The 
value D = 3 7 0  for ellipse VI, photograph B', appears 
to be too high. In such cases of obvious discrepancy 
among a pair of values, it may be better to repeat the 
whole photograph after a slight rotation of the crystal, 
so as to increase the size of the ellipse(s) concerned. 

If it is desired to swing the ellipse whose 'extreme 
point' has coordinates (s, z) as in Fig. 5, into a horizon- 
tal orientation, this can be done roughly as follows: 
Find Y and 0c from s, z, camera radius R and the above 
relations. Then rotate the crystal (positioned at C) 
through an angle 

Fig.4. ICF chart, Length proportional to camera radius and equal to 180 mm for a camera radius of 28.65 mm. 
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Table 1. Comparison of relative p.c.p, densities D of 
various Laue ellipses, as measured on different photo- 

graphs 
Ellipse no. Photograph N ICF D 

I A 19 15.5 294 
A' 19 16.5 314 

II A 19 12-0 228 
A' 20 11.5 230 

III A 40 5.0 200 
A' 45 4.8 216 

IV A _ I __ 
A' 47 4.2 197 

V A 44 2.78 122 
A' 43 2.74 118 

VI B 15 19.5 292 
B' 19 19-5 370 

VII B 26 9.5 247 
B' 26 9.2 239 

VIII B 24 6"6 158 
B' 27 6.8 184 

IX B 47 5.5 258 
B' 45 5-4 248 

X B 45 4.2 189 
B' 47 4-5 212 

XI B 51 2-44 124 
B' 46 2.45 113 

TOT' = arc tan 
R sin Y" 

about CO and towards the vertical. Finally, rotate 
the crystal through an angle (90 ° - ~ )  about AA', again 
towards the vertical. 

Conclusion 

Prime coordinate points have been defined and shown 
to be uniformly distributed throughout an n-dimen- 
sional lattice. Application of the two-dimensional case 
to Laue photographs gives a practical method of 
identifying relplanes by their relative relpoint packing 
densities, whenever the Laue ellipses generated by the 
relplanes are complete on the photograph. Use of the 
'extreme point' of a Laue ellipse also enables one to 
calculate roughly the angular corrections required to 
swing the corresponding relplane into the horizontal. 
The applicability of the method is at present limited 
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Fig. 5. Laue reflexion coordinates on a plane and a cylindrical 
film. 

by the comparatively small angular ranges of both 
the cylindrical camera and the type of goniometer 
normally employed. 

Application of the three-dimensional case to Laue 
photographs leads us to expect the same average 
number of Laue reflexions into the solid angle 4n, 
no matter what the orientation of the crystal may be. 
This offers a method, in principle, of determining the 
volume of the primitive unit cell of a crystal mounted 
in random orientation, from a knowledge of the 
minimum wavelength of the X-rays used, and of the 
total number of Laue reflexions obtained. 
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toria, and in particular to Professor W.Schaffer, 
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going through most of the manuscript and making 
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